Deconstructing the iPad: How Federally Supported Research Leads to Game-Changing Innovation

Key Points

• The iPhone and iPad, and similar modern smart devices, are transformative devices that encapsulate a remarkable confluence of technologies: supercomputer-like processing capability; a sensor suite (cameras, GPS, microphone, compass, accelerometer) robust enough to know where the device is and what it's looking at; and an interface that is revolutionary in its ease of use.

• These technologies have enabled game-changing capabilities -- the ability to translate signs simply by pointing a camera at them, convert foreign speech into one's native tongue, tap into real-time networks that provide traffic information, or have at your fingertips access to all the world's information.

• Without exception, these technologies, and others like them, have their roots in early-stage scientific research and all bear the stamp of federal support.

• The iPad processor, as well as all the support and interface chips, was born out of work on the first integrated circuit at Texas Instruments and Fairchild in 1958; the GPS system that allows the iPad to know its location to a few feet was born out of early-stage physics research in U.S. universities in the '40s and 50's; and the touchscreen and multi-touch interface was born out of Defense-research in the late 60s and 70s and NSF-funded research in the 80s and 90s. All are examples of enabling technologies that are products of an enormously productive research ecosystem, an interplay of privately funded industrial labs, federally-funded university researchers, and federal labs, that produce a constant stream of people and ideas to drive American innovation.

• This early-stage research (also known as “basic” or “fundamental” research) in universities and federal labs does not supplant work done in industry. Early-stage scientific research has a number of characteristics that make it an appropriate responsibility of the Federal government and inappropriate for industry:
 • It often takes a long time before it pays off -- sometimes decades; industry is generally focused on the next product cycle or two;
 • It often pays off in unanticipated ways -- developments in one sector frequently enable advancements in others, often serendipitously;
 • It's difficult for industry to capture the benefit of early stage research because the results of that research, by nature, are available to everyone, including the competition.

• Federal support for early stage research is truly an investment with a history of extraordinary payoff -- in the explosion of new technologies that have touched nearly every aspect of our lives, and in economic terms, in the creation of new industries and literally millions of new jobs.

• The iPad isn’t a culmination of technology, it's a mile-marker on a continuum of innovation that is improving our quality of life, a continuum of innovation made possible by federal research. The federally supported research of today will drive the innovations that will change our lives in the years and decade(s) ahead.

Event Sponsors: American Chemical Society (acs.org); APS Physics (aps.org); Computing Research Association (cra.org); IEEE-USA (ieeeusa.org); Materials Research Society (mrs.org); Texas Instruments (ti.com)

TASK FORCE ON AMERICAN INNOVATION www.innovationtaskforce.org